Mark Rebeiz, Ph.D.

  • Associate Professor
  • Department of Biological Sciences

Education & Training

  • Ph.D. in Developmental Biology from UC San Diego, 2006
  • M.S. in Reproductive Biology from University of Illinois at Urbana-Champaign, 1999
  • B.S. in Agricultural Sciences from University of Illinois at Urbana-Champaign, 1995

Research Interest Summary

Development and evolution of morphological phenotypes

Research Categories

Research Interests

One of the greatest puzzles in evolutionary biology is to understand how the spectacular array of organismal forms on our planet arose. Research in evolutionary developmental biology (evo-devo) aims to molecularly characterize evolutionary changes in the developmental mechanisms that control morphology. Pioneering work in evo-devo uncovered the remarkable discovery that an ancient "toolkit" of regulatory pathways and transcription factors shared between flies and humans shape the development of vastly different animals. Sequencing of multiple genomes (including our own) has shown that even the most complex creatures lack originality in their repertoire of genes, suggesting that changes in gene regulation are important for generating complexity. Our research is focused on learning how these evolutionarily resilient building blocks are molecularly rearranged and modified to generate diversity, particularly differences in morphology. 

How do new expression patterns evolve?

Every location where a gene is expressed (gene expression pattern) arose at some point in the past, yet the evolutionary origins of these patterns remain murky. In a hunt for newly evolved expression patterns, we are investigating the molecular mechanisms that generate these patterns, and the origins of regulatory sequences that control gene expression.

How do networks of genes evolve to generate complex phenotypes?

We are studying highly divergent pigmentation patterns of closely related Drosophila species as a model to understand the intricate web of genes and mutations that underlie complex traits.

How do new structures originate?

The evolutionary beginnings of morphological novelties, structures that bear no obvious antecedent, represent a major mystery of biology. Using the wildly divergent morphology of Drosophila genitalia, we are investigating genes and mutations that generate elaborate novel structures.

Representative Publications

Pham T, Glassford WJ, Johnson WC, Williams TM, Rebeiz M. The evolutionary origination of a novel expression pattern through an extreme heterochronic shift. (submitted to Evolution & Development) (2015)

Glassford WJ, Johnson WC, Dall NR, Liu Y, Boll W, Noll M, Rebeiz M. Co-option of an ancestral Hox-regulated network underlies a recently evolved morphological novelty. (In Press, Developmental Cell) (2015)

Johnson WC*, Ordway AJ*, Watada M, Pruitt JN, Williams TM, Rebeiz M. Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity Within and Between Drosophila Species. PLoS Genetics, 11(6): e1005279 (2015)

Camino EM, Butts JC, Ordway AJ, Velky JE, Rebeiz M, Williams TM. The evolutionary origination and diversification of a dimorphic gene regulatory network through parallel innovations in cis and trans. PLoS Genetics, 11(4): e1005136 (2015)

Miller SW, Rebeiz M, Atanasov JE, and Posakony JW. Neural precursor-specific expression of multiple Drosophila genes is driven by dual enhancer modules with overlapping function. PNAS, 111(48) 17194-17199. (2014)

Ordway JA*, Hancuch KN*, Johnson WC, Williams TW, Rebeiz M. The expansion of body coloration involves coordinated evolution in cis and trans within the pigmentation regulatory network of Drosophila prostipennis. Dev Biol, 392(2):431-440 (2014)

Rogers WA, Grover S, Stringer SJ, Parks J, Rebeiz M, Williams TW. A survey of the trans-regulatory landscape for Drosophila melanogaster abdominal pigmentation. Dev Biol, 385(2):417-432 (2014) [Faculty of 1000]

Glassford WJ, Rebeiz M. Assessing constraints on regulatory sequence evolution. Phil Trans B, 368(1632):20130026 (2013) [Faculty of 1000]

Salomone JR, Rogers WA, Rebeiz M, and Williams TM. The evolution of Bab paralog expression and abdominal pigmentation among Sophophora fruit fly species. Evolution and Development, 15(6):442-457 (2013)

Rogers WA, Salomone J, Tacy DJ, Camino EM, Davis K, Rebeiz M, and Williams TM. Recurrent modification of a conserved cis-regulatory element underlies the diversity for a sexually dimorphic fruit fly pigmentation trait. PLoS Genetics, 9(8):e1003740 (2013)

Full List of Publications

Google Scholar